Welcome to Wildlife Ecology
Distance Education
Course Number: FW 481/581
Credit Hours: 4
Prerequisites: Ecology is required. Intro statistics is recommended.
Instructor: Dr. Douglas Robinson
Office: Nash 140
Phone: 737-9501
E-mail: douglas.robinson@oregonstate.edu

Extra help: Feel free to correspond with me about setting up a time that is convenient for you.
Course Objectives: We will cover basic ecological principles and patterns as they relate to the conservation and management of biodiversity. Each section of the course will have a set of written objectives to guide students through the material they are expected to learn.
Learner Outcomes: By the end of the course, the student will be able to accomplish the following objectives.
FW 481 and 581:
Explain the relationships between species’ distributions, habitat composition and configuration, and individual species’ characteristics.
Explain the importance of interactions among species on community structure and population sizes of species indirectly influenced by species’ interactions across trophic levels.
Explain the relative magnitude of expected changes in community composition and populations of particular species as a function of global climate change.
Apply ecological knowledge to novel circumstances and suggest appropriate actions to achieve wildlife management goals.
Constructively critique in writing scientific publications covering topics in wildlife ecology.

FW 581 only:
Synthesize information from the scientific literature on wildlife ecology and present summaries of that knowledge in writing.
Present descriptions of a wildlife ecological field study orally and answer questions posed by fellow students and the instructor about the study design, background, justification, and expected products.
Demonstrate an ability to mentor undergraduate students in critiquing contents of scientific publications.
Textbook:
I recommend you purchase E. G. Bolen and W. Robinson, Wildlife Ecology and Management, 5th edition. For lab exercises, you’ll need a computer with Excel on it. We will read a number of scientific articles as well.

For textbook accuracy, please check the textbook list at the OSU Bookstore website (http://www.osubeaverstore.com). Syllabi may not have the most up to date textbook information!

Student responsibilities and requirements:
Students are expected to be actively engaged in learning. Typically, this means taking detailed notes and having a plan for studying and understanding BOTH the general ideas and the details of the materials presented. It also means completing all assignments on time. Our method of assessing the degree to which you have mastered the material is to have written exams and short writing assignments. The breakdown of points and expected scores for particular letter grades are below.

In general, however, the guideline for performance for each letter grade is as follows:

A: The student produces assignments with answers that are technically correct, grammatically correct, communicated clearly and accurately, and in precise language (not too concise, not too verbose). On exams, the student demonstrates an excellent understanding of BOTH the general ideas and the specific details of the material. The student can integrate different ideas from course materials and answer questions correctly when those different ideas are linked in new ways.

B: The student produces assignments with answers that are mostly technically correct, grammatically correct, communicated clearly and accurately, and which could be presented more concisely or expanded somewhat to clarify answers. On exams, the student demonstrates a very good understanding of the general ideas and concepts and answers correctly more than 80% of questions about specific details from class material.

C: The student produces assignments with answers that are mostly technically correct, with only a few grammatical or spelling problems, and communicates the answers in a manner that could be improved substantially by revising presentation of the answers. On exams, the student demonstrates an average level of understanding of the general ideas and correctly recalls more than 70% of the specific details from class material.

D: The student presents poorly conceived answers in the writing assignments. Answers are sometimes technically incorrect or incomplete, many grammatical and spelling problems are present, and the answers are not explained clearly. On exams, the student shows a below average understanding of general ideas and recalls less than 70% of the specific details from the material.

F: The student answers questions incorrectly and turns in assignments that are formed in poor English and poorly presented. On exams, the student indicates a poor comprehension of general ideas and specific details.

I want you to learn as much as you can, not just the details of the course material, but how to study and how to be an excellent student and professional biologist. So, if you find yourself in one of the grade categories that you do not want to be in, PLEASE correspond with me so we can work through ways to help you improve your learning. Do this EARLY. Waiting until the end of the quarter will not help as much.
Grading:

2 hour exams @ 75 pts each 150 points
Final exam (comprehensive) 100
Writing assignments 70
Total points 320

Grading Scale (a plus/minus system may be employed for borderline grades):
A = 90 - 100%
B = 80 - 89.9%
C = 70 - 79.9%
D = 60 - 69.9%

Exam format: Exams will use a mixture of question types, including short essay, fill-in-the-blank, matching, calculation, critical comparisons, and maybe more.

Tentative Schedule and Outline of Course Content:

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Tuesday/Thursday lecture</th>
<th>Thursday lab</th>
<th>Reading for lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Intro. to Class</td>
<td>History of Wildlife Ecology; Hypotheses and predictions; How to read articles and write responses</td>
<td>Bolen and Robinson chapter 1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>What is biodiversity? How many species are there?</td>
<td>Biodiversity measurements</td>
<td>Donovan Sampling species richness chapter</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Patterns of species distribution</td>
<td>Area sensitivity</td>
<td>Donovan Range Expansion chapter</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Species and area, nestedness, area sensitivity</td>
<td>Area, extinction, and reserve design</td>
<td>Brooks et al. or Pimm sp-area paper; Donovan Island Biogeography chapter</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Fragmentation</td>
<td>Midterm</td>
<td>Donovan Edge Effects chapter</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Do species losses really matter? Mesopredator release</td>
<td>Tropical islands, California fragments</td>
<td>Terborgh et al. 2001 Crooks and Soule 1999</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Wildlife diseases, humans and urbanization</td>
<td>Biodiversity and Lyme disease</td>
<td>Osteld and Keesing 2000</td>
</tr>
<tr>
<td>Chapter</td>
<td>Topic</td>
<td>Models</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Natural selection and harvesting</td>
<td>Harvest models</td>
<td>Donovan Harvest Design chapter</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Reserve Design</td>
<td>Reserve Design models</td>
<td>Donovan Reserve Design chapter</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Landscape effects on species interactions, Invasive species</td>
<td>Landscape fragmentation; cowbirds and gamebirds</td>
<td>Robinson et al. 1995, Westemeier et al. 1998</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Final exam</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plagiarism

You are expected to submit your own work in all your assignments, postings to the discussion board, and other communications, and to clearly give credit to the work of others when you use it. Academic dishonesty will result in a grade of “F.” Link to Statement of Expectations for Student Conduct: http://oregonstate.edu/admin/stucon/achon.htm.

Students with Disabilities

Accommodations are collaborative efforts between students, faculty and Services for Students with Disabilities (SSD). Students with accommodations approved through SSD are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through SSD should contact SSD immediately at 541-737-4098.

Course evaluation

We encourage you to engage in the course evaluation process each term – online, of course. The evaluation form will be available toward the end of each term, and you will be sent instructions by Ecampus. You will login to “Student Online Services” to respond to the online questionnaire. The results on the form are anonymous and are not tabulated until after grades are posted.