NOTE to prospective students: This syllabus is intended to provide students who are considering taking this course an idea of what they will be learning. A more detailed syllabus will be available on the course site for enrolled students and may be more current than this sample syllabus.

Course Name: Experimental Design in Agriculture
Course Number: CROP 590
Credits: 4
Instructor name: Jennifer G. Kling
Instructor email: jennifer.kling@oregonstate.edu
Instructor phone: 541 737-8277
Instructor website: http://cropandsoil.oregonstate.edu/content/jennifer-g-kling
Teaching Assistant name and contact info: TBD

For more information, contact: ANDREW HUNT, 331A CRPS, 541-737-5884, ANDREW.HUNT@OREGONSTATE.EDU

Course Description
Field layout, analysis, and interpretation of basic experimental designs used in agronomy and plant breeding and including field plot techniques such as optimum plot size and shape, factorial arrangement, replication, sub-sampling, randomization, and blocking. Recitation provides practical experience with SAS. PREREQS: ST 351 or equivalent.

Course Overview
This course addresses the needs of the student preparing for a career in agricultural research or consultation and is intended to assist the scientist in the design, plot layout, analysis and interpretation of field and greenhouse experiments. Emphasis is placed on experimental designs used in agronomy and plant breeding research with more emphasis toward applied statistics rather than statistical theory. Many numerical examples and problems will be presented and the lab exercises will allow students to explore analyses using R and Excel.

Prerequisites
Students should have an introductory understanding of statistical methods including the ideas of interval estimation, significance testing, simple linear regression and correlation. Familiarity with such common statistical tables as Student’s t, F, and chi-square is expected. The necessary mathematical background is minimal. At most, knowledge of college algebra is required.

Communication
Please post all course-related questions in the General Discussion Forum so that the whole class may benefit from our conversation. Please email your instructor for matters of a personal nature. The instructor will reply to course-related questions and email within 24-48 hours. Your assignments and grades for course activities should be returned to you within five days of the due date.

Course Credits
This course combines approximately 120 hours of instruction, computer lab exercises, homework assignments, discussion, and online assessment for 4 credits.
Technical Assistance
If you experience computer difficulties, need help downloading a browser or plug-in, assistance logging into the course, or if you experience any errors or problems while in your online course, contact the OSU Help Desk for assistance. You can call (541) 737-3474, email osuhelpdesk@oregonstate.edu or visit the OSU Computer Helpdesk online.

- COURSE DEMO
- GETTING STARTED

COURSE SITE LOGIN INFORMATION
Information on how to login to your course site can be found HERE.

Learning Resources
There is no required text for this class. Quiz and exam questions will be based on material presented in lectures, demonstrations and computer lab exercises. Students are encouraged to consult textbooks on experimental design and statistics to reinforce concepts presented in class. The following texts are good examples, but there are many others available.

- Clewer, A.G. and D. H. Scarisbrick (2001) Practical Statistics and Experimental Design for Plant and Crop Science. John Wiley & Sons. (a good reference for those who are not too familiar with statistics; the emphasis on agricultural research is also very relevant for the course.) QK51.C58 2001
- Petersen, Roger G. (1994) Agricultural Field Experiments: Design and Analysis. Marcel Dekker, New York. (Much of the lecture material was adapted from this text, but it contains some errors. It is currently out of print.) S540.F5 P47 1994

For computer lab exercises using R and RStudio, there are many resources available online:

http://www.r-project.org

For those who would like to have a text that covers the basics of statistical analysis and graphing in R, the following reference is recommended:

Supplemental material such as old homework assignments and exams can be found on the course website that is used for the on-campus version of this class:
http://cropandsoil.oregonstate.edu/content/crop-590-agriculture

It should be noted that the on-campus version of the class has been using SAS for laboratory exercises, rather than R.

Note to prospective students: Please check with the OSU Bookstore for up-to-date information for the term you enroll (http://osubeaverstore.com/Academics or 800-595-0357). If you purchase course materials from other sources, be very careful to obtain the correct ISBN.

Canvas
This course will be delivered via Canvas where you will interact with your classmates and with your instructor. Within the course Canvas site you will access the learning materials, such as the syllabus.

This course is offered through Oregon State University Extended Campus. For more information, contact:
Web: ecampus.oregonstate.edu Email: ecampus@oregonstate.edu Tel: 800-667-1465
Measurable Student Learning Outcomes

Upon completion of the course, students should be able to:

- Identify objectives of a field, greenhouse or laboratory experiment and outline the scientific methods that would be used to meet those objectives.
- Describe approaches that a researcher can use to reduce experimental error in agricultural experiments. Select suitable plot sizes, shapes, and placement to control experimental error.
- Determine when blocking is needed and demonstrate how blocks are arranged in field experiments.
- Generate random numbers, summarize data, create graphs and perform simple statistical calculations using Excel (or comparable spreadsheet software).
- Describe the assumptions required for a valid ANOVA and apply diagnostic tools to determine if the assumptions are met. Utilize appropriate data transformations and discuss other approaches for analyzing data that do not satisfy ANOVA assumptions.
- Design an experiment, compute the components of an Analysis of Variance (ANOVA) using formulas in Excel, and interpret the results for the following experimental designs:
 - Completely Randomized Design
 - Randomized Complete Block Design
 - Latin Square Design
 - Split-Plot Design
 - Strip-Plot Design
- Use R software and Rstudio to import and analyze data, create graphs and interpret output for all of these experimental designs.
- Compare treatment means using appropriate mean separation techniques.
- Calculate the power of an experiment to detect differences among treatments. Determine optimal plot size and the number of replications needed to meet experimental objectives.
- Explain the difference between fixed and random effects and be able to interpret computer output from mixed model analyses.
- Distinguish nested and cross-classified factors in an experimental design. Explain the difference between subsampling and true replication. Compute an ANOVA for a nested design that includes subsamples using R/RStudio and interpret the output.
- Design factorial experiments and compute an ANOVA using Excel and R/Rstudio. Explain the meaning of main effects and interactions and show how they impact the interpretation of results.
- Form appropriate orthogonal contrasts to answer specific questions raised by an experiment. Perform tests of significance and interpret results.
- Explain the purpose of repeated measures analyses and identify experimental circumstances for which they would be appropriate.
- Perform a combined analysis of data from multiple experiments using R/Rstudio and interpret the output.
- Select an efficient experimental design to meet the objectives of an experiment and justify your choice of designs.
Evaluation of Student Performance

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Format</th>
<th>Grade %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussions (weekly)</td>
<td>General questions on course content; students act as tutors at least one time during the term</td>
<td>10%</td>
</tr>
<tr>
<td>Graded Assignments (4)</td>
<td>Excel spreadsheets uploaded to Canvas as assignments; may include relevant output from R</td>
<td>20%</td>
</tr>
<tr>
<td>Lecture study questions and problem sets (7)</td>
<td>Questions are distributed in advance; students answer multiple choice questions online</td>
<td>20%</td>
</tr>
<tr>
<td>Lab Quizzes (8)</td>
<td>Multiple choice; not timed; can be taken twice</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm</td>
<td>Fixed schedule and timed; closed book but formula sheet permitted; multiple choice and short answer</td>
<td>10%</td>
</tr>
<tr>
<td>Individual Term Project</td>
<td>Experimental plans posted by each student on discussion board</td>
<td>10%</td>
</tr>
<tr>
<td>Final Group Project</td>
<td>R programs and data analysis output submitted as assignments; group presentation and discussions on interpretation of experimental results</td>
<td>5%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Fixed schedule and timed; closed book but formula sheet permitted; multiple choice and short answer; Synthesis questions on experimental design scenario</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Grades will be assigned according to the following percentage system:

<table>
<thead>
<tr>
<th>Grade %</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥97</td>
<td>A+</td>
</tr>
<tr>
<td>93-96</td>
<td>A</td>
</tr>
<tr>
<td>90-92</td>
<td>A-</td>
</tr>
<tr>
<td>87-89</td>
<td>B+</td>
</tr>
<tr>
<td>83-86</td>
<td>B</td>
</tr>
<tr>
<td>80-82</td>
<td>B-</td>
</tr>
<tr>
<td>77-79</td>
<td>C+</td>
</tr>
<tr>
<td>73-76</td>
<td>C</td>
</tr>
<tr>
<td>70-72</td>
<td>C-</td>
</tr>
<tr>
<td>67-69</td>
<td>D+</td>
</tr>
<tr>
<td>63-66</td>
<td>D</td>
</tr>
<tr>
<td>≤59</td>
<td>F</td>
</tr>
</tbody>
</table>

Course Content

Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Assignments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Types of experiments</td>
<td>➢ Discussion board introductions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Steps in experimentation</td>
<td>➢ Study Questions #1 (review of statistics)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Review of hypothesis tests and t tests</td>
<td>➢ Lab Quiz for Week 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Control of experimental error</td>
<td>➢ Install R and Rstudio on your computer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Terminology used in field experiments</td>
<td>➢ Discussion Board Q&A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Types of variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Lab: Excel Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>• Completely Randomized Design (CRD)</td>
<td>➢ Homework #1 (CRD design and analysis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CRD – hand calculations</td>
<td>➢ Lab Quiz for Week 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CRD – numerical example with Excel</td>
<td>➢ Discussion board topic – student examples of CRD experiments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Lab: Introduction to R</td>
<td>➢ Discussion Board Q&A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Lab: CRD – analysis with R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Principles of blocking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Randomized Complete Block Design (RBD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Topics</td>
<td>Assignments</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| 3 | • RBD – numerical example
• Power calculations
• Optimum plot size and number of reps
• Plot size and rep # – hand calculations
➤ Lab: RBD – analysis with R
➤ Lab: Power calculations with R | ➤ Homework #2 (RBD design and analysis)
➤ Lab Quiz for Week 3
➤ Study Questions #2 (rep and plot size calculations)
➤ Discussion Board Q&A |
| 4 | • Assumptions of the ANOVA
• Transformations
• Fixed, random, and mixed models
• Generalized Linear Mixed Models
➤ Lab: Testing ANOVA assumptions and use of transformations with R
➤ Lab: Mixed Models with R | ➤ Study Questions #3 (ANOVA assumptions)
➤ Lab Quiz for Week 4
➤ Discussion board – choice of topics for term projects
➤ Discussion Board Q&A in preparation for midterm |
| 5 | • Latin Square Design
• Mean separation techniques
➤ Lab: Latin Square Design in R
➤ Lab: Mean separation techniques in R | **Midterm Exam**
➤ Study Questions #4 (Latin Square Design and mean separation techniques)
➤ Lab Quiz for Week 5
➤ Discussion Board Q&A |
| 6 | • Factorial experiments (two-way)
• Main effects and interactions
• Factorial experiments (three-way)
• Orthogonal contrasts
➤ Lab: Factorial experiments with R
➤ Lab: Orthogonal contrasts with R | ➤ Homework #3 (Factorials experiments and orthogonal contrasts)
➤ Lab Quiz for Week 6
➤ Discussion board – outline of experimental plans for term projects and comment on another
➤ Discussion Board Q&A |
| 7 | • Split-plot designs
• Strip-plot designs
• Repeated measures
• Regression in the ANOVA
• Orthogonal polynomial contrasts
➤ Lab: Split-plot, strip-plot with R
➤ Lab: Repeated measures with R
➤ Lab: Orthogonal polynomial contrasts with R | ➤ Homework #4 (Split-plot experiment with orthogonal polynomial contrasts)
➤ Study Questions #5 (Strip-plot experiments and Repeated measures)
➤ Lab Quiz for Week 7
➤ Discussion Board Q&A |
| 8 | • Nested (hierarchical) designs
• Subsampling
• Combined experiments (multilocational trials)
➤ Lab: Nested designs in R
➤ Lab: Combined experiments in R | ➤ Study Questions #6 (Nested designs and subsampling)
➤ Final Group Projects assigned (comprehensive analysis and interpretation of a combined experiment)
➤ Lab Quiz for Week 8
➤ Discussion Board Q&A |
| 9 | • Advanced Topics (choose one option)
➤ Option 1: Augmented Designs
➤ Option 2: Lattice Designs
➤ Option 3: Covariance Analysis | ➤ Study Questions on Advanced Topic
➤ Work on individual experimental plans
➤ Work on group projects
➤ Discussion Board Q&A |
| 10 | | ➤ Presentation of individual experimental plans on the Discussion board
➤ Peer review of experimental plans
➤ Presentation of group projects and discussion
➤ Synthesis question for final exam assigned
➤ Discussion Board Q&A in preparation for Final Exam |

Graded Homework Assignments

There will be four graded Homework assignments in this class that will be graded individually by your instructors. You are expected to complete the assignments in Excel or with comparable spreadsheet.
software. You should include enough detail in your calculations so that the instructor can determine how you got your answers. You may check your answers with the Excel analysis toolpak or other software, but you are expected to use basic Excel functions to solve the problems. It is acceptable to consult with your classmates as you solve the problems if you choose to do that, but the work that you submit must be your own. Your completed Excel spreadsheets should be uploaded as an Assignment in Canvas.

Lecture Study Questions and Problem Sets

Study questions (often problem sets) will be provided on a regular basis as indicated in the course schedule. The purpose of these assignments is to help you to review lecture material, gain experience solving problems, and to provide regular feedback on your understanding of lecture topics. After you have solved the problems you will complete the answer sheet online, which will be graded automatically.

Labs

During the first 8 weeks of the course you will complete a practical exercise that will give you some hands-on experience with analyses using the R software. You will not be expected to turn in work from your lab sessions, but participation is required. Lab quizzes will be available on Canvas to encourage you to review the lab material and ensure that you have understood the major concepts presented each week. These will be multiple choice, untimed, and may be taken twice. It is recommended that you take the first attempt as a self-assessment without reference to your notes, but it is up to you to establish the guidelines for Lab Quizzes that are most beneficial for you. You will need to be able to write simple R programs in order to do some of your assignments later in the term, and you may be asked to interpret R output on exams. The intent is for you to attain a degree of self-sufficiency so that you can use R effectively in your research. It is not expected that you will be able to write R code from memory without reference to readily available documentation.

Discussion Participation

Students are expected to participate in all graded discussions. While there is great flexibility in online courses, this is not a self-paced course. Due dates for discussion board posts will be clearly indicated in the weekly instructions in Canvas, and it is your responsibility to keep abreast of course requirements. We will be using the Discussion board for several purposes: 1) A forum for specific discussion board topics, 2) Work on individual and group projects, and 3) General questions on course material with responses from students and the instructor (Q&A). To receive full credit for the Q&A discussions, each student must post a question and act as a tutor at least once during the term. Tutors will select a question posed on the Discussion board by their classmates. When you select a question, be sure to leave a note in that discussion thread that you are preparing an answer, so other students and your instructor will not preempt your response. Within the next 24 hours you should prepare a thorough response using a medium of your choice (audio recording, screencast, Excel, powerpoint, etc.). To fulfill your tutoring requirements, your answer should be at least 5 minutes long for a screencast (or comparable length for other media). Alternatively, you could answer several questions that require shorter answers throughout the term. Questions that are not selected by student tutors will be answered by the instructor within 24-48 hours after the question is posted.

Advanced Topics

The essential concepts for this class will be presented during the first eight weeks of class. During Week 9, students will be expected to select one advanced topic, review the video presentation, and respond to the corresponding study questions. There is no lab scheduled for Week 9, but each presentation will include a practical example using R software. Students are welcome to complete more than one option if they wish. The schedule for the week is light to permit students to focus on preparations for the term projects that will be presented during the last week of class.
Term Projects

Week 10 of the class will be devoted to term projects. Details of expectations for the term projects are provided in separate instructions. Briefly, these are synthesis activities with the following components:

Individual Term Projects – Description of a plan for an experiment of your choosing which may be presented in various formats (power point, videos, etc). You will also be asked to critique some of the projects created by your classmates. This project will be referred to as a “poster” to emphasize that the presentation should be succinct and include visual elements such as graphs and images that will be readily understood by your audience (your classmates).

Group Project: Data Analysis – Analysis of data for a combined experiment using R software. You will be divided into groups of about four students and each group will be given a data set to analyze. If anyone has a data set that you think would be suitable and you are willing to share, please contact your instructor at the beginning of the term. Groups may be self-selected by notifying your instructor earlier in the term. Otherwise, you will be assigned to a group.

Group Project: Presentation of Results – Summary and interpretation of the data that you have analyzed. Each group will post their findings on the Discussion board, and students will be asked to comment on the work of their peers. The role of each group member should be briefly indicted in the report. A team leader should be appointed by each group, to coordinate the contributions of group members and to serve as a contact person if the instructor has questions about the project.

Proctored Exams

This course requires that you take exams under the supervision of an approved proctor. Proctoring guidelines and registration for proctored exams are available online through the Ecampus testing and proctoring website. It is important to submit your proctoring request as early as possible to avoid delays.

There will be one midterm and a final exam in this course. They are closed book, but you may prepare one 8.5” x 11” piece of paper with any formulas and notes that you think you may need in advance. You may write on the front and back of the paper (but magnifying lenses are not allowed!) You may use this formula sheet and your calculator during the exam. For the final, you may use the sheet you prepared for the midterm as well as an additional sheet with notes and formulas from the second half of the course. The final exam is comprehensive in the sense that later material builds on concepts that were learned earlier, but emphasis will be on the material presented after the midterm exam. The final will include an experimental design synthesis problem that will be given to you during deadweek. You will be presented with a particular scenario and asked to describe the best experimental design to meet the objectives of the experiment. You should think about the scenario and come up with a solution in advance, but the specific questions that you will need to answer about the design will not be known until you take the exam.

You will have 90 minutes to complete the midterm and up to 2 hours to complete the final. This is intended to be an ample amount of time provided that you are well-prepared and clearly understand the concepts. Proctors will receive hard copies of the exam prior to the scheduled exam period. Each exam will be open for submission within a 48-hour window. You will need to schedule the time for your exam within that window with your proctor in advance. The exams will be a mixture of multiple choice, short answer questions, short essays, and calculations. Answers should be written by hand. Completed exams should be scanned (or photographed) and submitted as a pdf in Canvas within one hour after the end of your scheduled exam period. Students who do not have access to a scanner may make prior arrangements to fax their completed exam to the instructor.
Course Policies

Makeup Exams
Makeup exams will be given only for missed exams excused in advance by the instructor. Excused absences will not be given for airline reservations, routine illness (colds, flu, stomach aches), or other common ailments. Excused absences will generally not be given after the absence has occurred, except under very unusual circumstances.

Incompletes
Incomplete (I) grades will be granted only in emergency cases (usually only for a death in the family, major illness or injury, or birth of your child), and if the student has turned in 80% of the points possible (in other words, usually everything but the final paper). If you are having any difficulty that might prevent you completing the coursework, please don’t wait until the end of the term; let your instructor know right away.

Guidelines for a Productive and Effective Online Classroom
Students are expected to conduct themselves in the course (e.g., on discussion boards, email) in compliance with the university’s regulations regarding civility.

Civility is an essential ingredient for academic discourse. All communications for this course should be conducted constructively, civilly, and respectfully. Differences in beliefs, opinions, and approaches are to be expected. In all you say and do for this course, be professional. Please bring any communications you believe to be in violation of this class policy to the attention of your instructor.

Active interaction with peers and your instructor is essential to success in this online course, paying particular attention to the following:

- Unless indicated otherwise, please review instructional materials for each week before participating in the discussion board.
- Read your posts carefully before submitting them.
- Be respectful of others and their opinions, valuing diversity in backgrounds, abilities, and experiences.
- Challenging the ideas held by others is an integral aspect of critical thinking and the academic process. Please word your responses carefully, and recognize that others are expected to challenge your ideas. A positive atmosphere of healthy debate is encouraged.

Statement Regarding Students with Disabilities
Accommodations are collaborative efforts between students, faculty, and Disability Access Services (DAS). Students with accommodations approved through DAS are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through DAS should contact DAS immediately at 541-737-4098.

Accessibility of Course Materials
All materials used in this course are accessible. If you require accommodations please contact Disability Access Services (DAS). Additionally, Canvas, the learning management system through which this course is offered, provides a vendor statement certifying how the platform is accessible to students with disabilities.

Expectations for Student Conduct
Student conduct is governed by the university’s policies, as explained in the Office of Student Conduct: Information and Regulations.

Academic Integrity
This course is offered through Oregon State University Extended Campus. For more information, contact: Web: ecampus.oregonstate.edu Email: ecampus@oregonstate.edu Tel: 800-667-1465
Students are expected to comply with all regulations pertaining to academic honesty. For further information, visit Avoiding Academic Dishonesty, or contact the office of Student Conduct and Mediation at 541-737-3656.

OAR 576-015-0020 (2) Academic or Scholarly Dishonesty:

a) Academic or Scholarly Dishonesty is defined as an act of deception in which a Student seeks to claim credit for the work or effort of another person, or uses unauthorized materials or fabricated information in any academic work or research, either through the Student’s own efforts or the efforts of another.

b) It includes:

(i) CHEATING - use or attempted use of unauthorized materials, information or study aids, or an act of deceit by which a Student attempts to misrepresent mastery of academic effort or information. This includes but is not limited to unauthorized copying or collaboration on a test or assignment, using prohibited materials and texts, any misuse of an electronic device, or using any deceptive means to gain academic credit.

(ii) FABRICATION - falsification or invention of any information including but not limited to falsifying research, inventing or exaggerating data, or listing incorrect or fictitious references.

(iii) ASSISTING - helping another commit an act of academic dishonesty. This includes but is not limited to paying or bribing someone to acquire a test or assignment, changing someone’s grades or academic records, taking a test/doing an assignment for someone else by any means, including misuse of an electronic device. It is a violation of Oregon state law to create and offer to sell part or all of an educational assignment to another person (ORS 165.114).

(iv) TAMPERING - altering or interfering with evaluation instruments or documents.

(v) PLAGIARISM - representing the words or ideas of another person or presenting someone else’s words, ideas, artistry or data as one’s own, or using one’s own previously submitted work. Plagiarism includes but is not limited to copying another person’s work (including unpublished material) without appropriate referencing, presenting someone else’s opinions and theories as one’s own, or working jointly on a project and then submitting it as one’s own.

c) Academic Dishonesty cases are handled initially by the academic units, following the process outlined in the University’s Academic Dishonesty Report Form, and will also be referred to SCCS for action under these rules.

Conduct in this Online Classroom
Students are expected to conduct themselves in the course (e.g., on discussion boards, email postings) in compliance with the university’s regulations regarding civility.

OSU Student Evaluation of Teaching
Course evaluation results are extremely important and are used to help me improve this course and the learning experience of future students. Results from the 19 multiple choice questions are tabulated anonymously and go directly to instructors and department heads. Student comments on the open-ended questions are compiled and confidentially forwarded to each instructor, per OSU procedures. The online Student Evaluation of Teaching form will be available toward the end of each term, and you will be sent instructions via ONID by the Office of Academic Programs, Assessment, and Accreditation. You will log in to “Student Online Services” to respond to the online questionnaire. The results on the form are anonymous and are not tabulated until after grades are posted.