Course Name: Nonpoint Source Pollution Assessment and Control
Course Number: BEE 458/558
Credits: 3 Credits

Course Description
This course is designed to (1) introduce and demonstrate methods for evaluating the extent, rate, timing, and fate of nonpoint source (NPS) pollutants in agricultural, rural residential, forested, and urban environments; and (2) require students to apply methods and design principles for evaluating and designing NPS control systems with incomplete information. The application, data, design criteria, and maintenance of common treatment practices (e.g., treatment wetlands, bioretention, green roofs, permeable pavement) will be discussed. Students will complete weekly homework and discussion assignments aimed at critical thinking about basic principles and processes in NPS. Individual design projects will also be required of all students. The target audience is both OSU students and the broader community (e.g., engineers and practitioners, regulators, watershed council coordinators).

Prerequisites - this course is open to graduate students and undergraduate juniors and seniors who have completed an introductory hydrology course (e.g., BEE 512, CE 412).

Communication
Please post all course-related questions in the General Discussion Forum so that the whole class may benefit from our conversation. Please email your instructor for matters of a personal nature. The instructor will reply to course-related questions and email within 24-48 hours.

Technical Assistance
If you experience computer difficulties, need help downloading a browser or plug-in, assistance logging into the course, or if you experience any errors or problems while in your online course, contact the OSU Help Desk for assistance. You can call (541) 737-3474, email osuhelpdesk@oregonstate.edu or visit the OSU Computer Helpdesk online.

Learning Resources
No textbook is required for this course. Students will be assigned daily readings from textbooks, peer-reviewed literature, and agency reports. These materials will be provided to students throughout the term via Canvas. Fundamental concepts covered by the reading materials and assignments may not be included in lectures, but may be on the Midterm Exam.

For additional research, the OSU Library website includes a page dedicated to helping Biological & Ecological Engineering students find journal articles, government publications, data resources, and standards, found at http://ica.library.oregonstate.edu/subject-guide/971-Biological-Ecological-Engineering
Note to prospective students: Please check with the OSU Bookstore for up-to-date information for the term you enroll (http://osubookstore.com/ or 800-595-0357). If you purchase course materials from other sources, be very careful to obtain the correct ISBN.

Canvas
This course will be delivered via Canvas where you will interact with your classmates and with your instructor. Within the course Canvas site you will access the learning materials, such as the syllabus, class discussions, assignments, projects, and quizzes. To preview how an online course works, visit the Ecampus Course Demo. For technical assistance, please visit Ecampus Technical Help.

Measurable Student Learning Outcomes
Student learning will be assessed using the following outcomes for the undergraduate and graduate sections:

- Demonstrate basic knowledge of terms and concepts
- Differentiate assessment methods for appropriateness
- Apply general engineering principles to new problems and situations
- Construct, manipulate, and interpret graphs of time series and spatial data
- Communicate problem, including design criteria and assumptions, and solutions effectively in writing

ABET Learning Outcomes
In accordance with the Accreditation Board for Engineering and Technology (ABET) A-K learning outcomes, students completing this course will possess and be evaluated on their:

1. Ability to identify, formulate, solve engineering problems (homework assignments, midterm exam, term project)
2. Ability to communicate effectively (homework assignments, online discussions, and term project)
3. Knowledge of contemporary issues (homework assignments, online discussions, term project)

Assignments relevant to these three outcomes will be kept and shared with ABET evaluators. Further, students will be given self-assessment surveys on the first and final days of the course to evaluate the success of the class in improving key skills in this field.

Evaluation of Student Performance
Student learning will be evaluated through a total of 5 homework assignments, participation in online discussions, a midterm exam, and a term-long individual design project. Students enrolled in BEE 558 will have a more extensive set of term project deliverables than students enrolled in BEE 458.

Grades and overall evaluation of student performance will be based on course activities in the following proportions:

BEE 458
- Weekly homework assignments (5) – 30%
- Participation (including discussions) – 10%
- Mid-term exam - 20%
- Final design project - 40%
For achieving graduate credit, BEE 558 students will be responsible for leading case study discussions during weeks 6-9.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Reading Assignments</th>
<th>Learning Activities</th>
<th>Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction
NPSP sources, classes, and control
NPSP policy and TMDLs</td>
<td>Student introductions; Online discussion questions; Assignment 1 – 303(d) Lists and TMDLs</td>
<td>Assignment 1 due</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fate and transport of NPS pollutants in the environment</td>
<td>Online discussion questions; Assignment 2 – NPSP Conceptual Model, Part A</td>
<td>Assignment 2A due</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hydrology, soils, and NPSP
Ward and Trimble Chapter 5: “Runoff and Subsurface Drainage”</td>
<td>Online discussion questions; Assignment 3 - Runoff Estimation; Assignment 2, Part B</td>
<td>Assignment 3 due</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pollutant load estimation
Monitoring</td>
<td>Online discussion questions; Assignment 4 - Load Estimation</td>
<td>Assignment 2B due Assignment 4 due</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Major classes of BMPs for NPSP prevention and management</td>
<td>Assignment 5 - BMP Wiki Glossary; Midterm Exam</td>
<td>Assignment 5 due Term Project Pt. 1a due</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Urban NPSP</td>
<td>Online team case study discussion</td>
<td>Term Project Pt.1b due</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Agricultural NPSP
Wigington et al. 2003. “Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in W OR”</td>
<td>Online team case study discussion</td>
<td>Term Project Pt. 2a due</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Irrigated agriculture and rangeland NPSP
English et al. 2002. “A paradigm shift in irrigation management”</td>
<td>Online team case study discussion</td>
<td>Term Project Part 2b due</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Hydromodification and mining NPSP</td>
<td></td>
<td>Online team case study discussion</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NPSP at the basin scale</td>
<td>Final project preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finals</td>
<td></td>
<td>Final Project</td>
<td>Project due</td>
<td></td>
</tr>
</tbody>
</table>
*Lecture organization is subject to change. A detailed, and occasionally updated schedule will be maintained on Canvas.

Course Policies
Assignments
Students are expected to adhere to assignment guidelines for the Department of Biological and Ecological Engineering at Oregon State University for all work submitted in this course. Official guidelines can be found on the Canvas page for this course, under Course Documents.

Assignments are due by 5:00pm Pacific Standard Time on the due date. Late assignments will be docked 5% for each day that the assignment is past due.

Discussion Participation
Students are expected to participate in all graded discussions. While there is great flexibility in online courses, this is not a self-paced course. You will need to participate in our discussions on at least two different days each week, with your first post due no later than Wednesday evening, and your second and third posts due by the end of each week.

Exams
You are expected to complete the midterm exam and any other assigned quizzes on your own, without the assistance of other classmates, colleagues, friends, or relatives. Please see statement below regarding academic integrity.

Incompletes
Incomplete (I) grades will be granted only in emergency cases (usually only for a death in the family, major illness or injury, or birth of a child), and if the student has turned in 80% of the points possible (in other words, everything but the final project). If you are having any difficulty that might prevent you completing the coursework, please don’t wait until the end of the term; let the instructor know right away.

Statement Regarding Students with Disabilities
Accommodations are collaborative efforts between students, faculty and Disability Access Services (DAS) with accommodations approved through DAS are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through DAS should contact DAS immediately at 541-737-4098.

Expectations for Student Conduct
Student conduct is governed by the university’s policies, as explained in the Office of Student Conduct: Information and Regulations.

Academic Integrity
Students are expected to comply with all regulations pertaining to academic honesty. For further information, visit Avoiding Academic Dishonesty, or contact the office of Student Conduct and Mediation at 541-737-3656.

OAR 576-015-0020 (2) Academic or Scholarly Dishonesty:

a) Academic or Scholarly Dishonesty is defined as an act of deception in which a Student seeks to claim credit for the work or effort of another person, or uses unauthorized materials or fabricated information in any academic work or research, either through the Student's own efforts or the efforts of another.

b) It includes:
(i) CHEATING - use or attempted use of unauthorized materials, information or study aids, or an act of deceit by which a Student attempts to misrepresent mastery of academic effort or information. This includes but is not limited to unauthorized copying or collaboration on a test or assignment, using prohibited materials and texts, any misuse of an electronic device, or using any deceptive means to gain academic credit.

(ii) FABRICATION - falsification or invention of any information including but not limited to falsifying research, inventing or exaggerating data, or listing incorrect or fictitious references.

(iii) ASSISTING - helping another commit an act of academic dishonesty. This includes but is not limited to paying or bribing someone to acquire a test or assignment, changing someone’s grades or academic records, taking a test/doing an assignment for someone else by any means, including misuse of an electronic device. It is a violation of Oregon state law to create and offer to sell part or all of an educational assignment to another person (ORS 165.114).

(iv) TAMPERING - altering or interfering with evaluation instruments or documents.

(v) PLAGIARISM - representing the words or ideas of another person or presenting someone else’s words, ideas, artistry or data as one's own, or using one's own previously submitted work. Plagiarism includes but is not limited to copying another person's work (including unpublished material) without appropriate referencing, presenting someone else's opinions and theories as one's own, or working jointly on a project and then submitting it as one's own.

c) Academic Dishonesty cases are handled initially by the academic units, following the process outlined in the University's Academic Dishonesty Report Form, and will also be referred to SCCS for action under these rules.

Conduct in this Online Classroom
Students are expected to conduct themselves in the course (e.g., on discussion boards, email postings) in compliance with the university's regulations regarding civility.

Tutoring
NetTutor is a leading provider of online tutoring and learner support services fully staffed by experienced, trained and monitored tutors. Students connect to live tutors from any computer that has Internet access. NetTutor provides a virtual whiteboard that allows tutors and students to work on problems in a real time environment. They also have an online writing lab where tutors critique and return essays within 24 to 48 hours. Access NetTutor from within your Canvas class by clicking on the Tools button in your course menu.

OSU Student Evaluation of Teaching
Course evaluation results are extremely important and are used to help me improve this course and the learning experience of future students. Results from the 19 multiple choice questions are tabulated anonymously and go directly to instructors and department heads. Student comments on the open-ended questions are compiled and confidentially forwarded to each instructor, per OSU procedures. The online Student Evaluation of Teaching form will be available toward the end of each term, and you will be sent instructions via ONID by the Office of Academic Programs, Assessment, and Accreditation. You will log in to “Student Online Services” to respond to the online questionnaire. The results on the form are anonymous and are not tabulated until after grades are posted.

NOTE to prospective students: This syllabus is intended to provide students who are considering taking this course an idea of what they will be learning. A more detailed syllabus will be available on the course Canvas site for enrolled students and may be more current than this sample syllabus.
This course is offered through Oregon State University Ecampus. For more information visit: ecampus.oregonstate.edu.